PMT

June 2004

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/04

MATHEMATICS Paper 4 (Mechanics 1)

D	1 and	Mark Scher	no		Syllabus Paper
-	A AND AS LEVEL – JUNE 2004			9709 4	
1	(i)	$F = 13 \cos \alpha$	M1		For resolving forces horizontally
		Frictional component is 12 N	A1	2	
	(ii)	$R = 1.1 \times 10 + 13 \sin \alpha$	M1		For resolving forces vertically (3
		Normal component is 16 N	Δ1	2	terms needed)
	(iii)	Coefficient of friction is 0.75	B1 ft	1	
2		$X = 100 + 250\cos 70^{\circ}$	B1		
		Y = 300 – 250sin70°	B1		
		$R^2 = 185.5^2 + 65.1^2$	M1		For using $R^2 = X^2 + Y^2$
		<i>R</i> = 197	A1 ft		ft only if one B1 is scored or if
					the expressions for the
					candidate's X and Y are those
		ton 65 1/195 5	N/1		For using top a V/V
		a = 03.1/105.5		6	For using $\tan \alpha = r/\lambda$
		<i>a</i> – 19.5	AII	0	SR for $sin/cos mix (max 4/6)$
					$X = 100 + 250 \sin 70^{\circ}$ and
					$Y = 300 - 250\cos 70^{\circ}$
					(334.9 and 214.5) B1
					Method marks as scheme M1 M1
					$R = 398$ N and $\alpha = 32.6$ A1
		240(227700) - = 407(4520) - =	OR		
		316(.227766) or 107(.4528) or	B1		Magnitude of the resultant of
		71565° or 372743° or	B1		Direction of the resultant of two
		-51.7039 °	ы		of the forces
		$R^2 = 316.2^2 + 250^2 -$	M1		For using the cosine rule to find
		2×316.2×250cos38.4°			R
		$R^2 = 107.5^2 + 100^2 - 100^2$			
		$2 \times 107.5 \times 100 \cos 142.7^{\circ}$			
		7 = 299.3 + 300 = $2 \times 299.3 \times 300$ cos 38.3°			
		R = 197	A1 ft		ft only if one B1 is scored
		$sin(71.6 - \alpha) = 250sin38.4 \div 197$	M1		For using the sine rule to find α
		$sin(37.3 - \alpha) = 100sin142.7 \div 197$			-
		$sin(51.7 + \alpha) = 300sin38.3 \div 197$			
		$\alpha = 19.3^{\circ}$	A1 ft		ft only if one B1 is scored
3	(i)	Distance AC is 70 m	B1		
		$7 \times 10 - 4 \times 15$ Distance <i>AB</i> is 10 m	M1 A1	2	For using AB = AC - BC
	(***)			5	
	(11)	x(m) ▲	M1		Graph consists of 3 connected
					order positive zero and
					negative slopes, $x(t)$ is single
					valued and the graph contains
					the origin
			A1		1 st line segment appears
		10			steeper than the 3 rd and the 3 rd
		10 15 30			Ine segment does not terminate
			Λ1 F I	2	UILINE t -axis
			AII	3	x (70, 70, 10) shown or can be
					read without ambiguity from the
					scales
					SR (max 1out of 3 marks)
					For first 2 segments correct B1

PMT

Page 2	Mark Scheme	Syllabus	Paper	
	A AND AS LEVEL – JUNE 2004	9709	4	

4	(i)	KE = 0.2g(0.7)	M1		For using KE = PE lost and PE lost = <i>mgh</i>
		Kinetic energy is 1.4 J	A1	2	-
	(ii)	$R = 0.2 \times 10 \times \cos 16.3^{\circ}$ F = 0.288 N	B1 B1 ft		1.92 From 0.15 <i>R</i> (may be implied by subsequent exact value 0.72.
		WD = 0.72 J or $a = 1.36$ or resultant downward force = 0.272 N	B1 ft		1.36 or 0.68) From 2.5 F or from 0.2 a = 0.2×10× (7/25) – F (may be implied by subsequent
		$\begin{array}{l} KE = 1.4 - 0.72 \text{or} \\ KE = \frac{1}{2} \ 0.2(2 \times 1.36 \times 2.5) \text{or} \\ 0.272 \times 2.5 \end{array}$	M1		exact value 0.68) For using KE = PE lost – WD or KE = $\frac{1}{2} mv^2$ and v^2 = 2as or KE = resultant downward force
		Kinetic energy is 0.68 J	A1 ft	5	× 2.5

5	(i)	$10t^2 - 0.25t^4$ (+C)	M1		For integrating v
			DM1		For including constant of
					integration and attempting to
					evaluate it
		Expression is $10t^2 - 0.25t^4 - 36$	A1	3	
	(ii)	Displacement is 60 m	A1 ft	1	Dependent on both M marks in
					(i); ft if there is not more than
					one error in $s(t)$
	(iii)	$(t^2 - 36)(1 - 0.25t^2) = 0$	M1		For attempting to solve $s = 0$
					(depends on both method
					marks in (i)) or $\int_0^{vdt} = 36$ (but
					not –36) for t^2 by factors or
					formula method
		Roots of quadratic are 4, 36	A1		
		<i>t</i> = 2, 6	A1 ft	3	ft only from 3 term quadratic in
					t^2

6	(i)		M1		For using Newton's 2 nd law (3 terms needed)
		DF - 400 = 1200×0.5 20000 = $1000v$ Speed is 20 ms ⁻¹	A1 M1 A1	4	For using $P = Fv$
	(ii)	20000/v - 400 = 0	M1		For using $P = Fv$ and Newton's 2^{nd} law with $a = 0$ and $F = 400$
		$v_{\rm max} = 50 \ {\rm ms}^{-1}$	A1	2	AG
	(iii)	$20000 = \frac{1500000}{\Delta T} \text{ or}$ distance = 1500 000/400 = 3750 and time = 3750/50 Time taken is 75 s	M1 A1	2	For using $P = \frac{\Delta W}{\Delta T}$ or for using 'distance = work done/400' and 'time = distance/50'

PMT

F	Page 3	Mark Scheme				Syllabus	Paper	
		A AND AS LEVEL –	JUNE	2004		9709	4	
7	(i)	$25 = 30t - 5t^{2} \Rightarrow t^{2} - 6t + 5 = 0 \Rightarrow$ (t - 1)(t - 5) = 0 or $y^{2} = 30^{2} - 500$; to $t_{re} = (20 - 0)/10$	M1		For using attemption or for us $t_{\rm up} = (v - t_{\rm up})$	r using $25 = ut - \frac{1}{2}gt^2$ and empting to solve for t for using $v^2 = u^2 - 2g(25)$ and = (v - 0)/a		
		$t = 1, 5 \text{ or } t_{up} = 2$ Time = 5 – 1 = 4 s or Time = 2×2 = 4s or 1 < t < 5	A1 A1	3	up (.,		
	(ii)	$s_1 = 30t - 5t^2$ and $s_2 = 10t - 5t^2$	M1		For using and P_2	$g s = ut - \frac{1}{2}$	gt^2 for P_1	
		30t - 10t = 25	M1		For using attempting	using $s_1 = s_2 + 25$ and sempting to solve for t		
		<i>t</i> = 1.25	A1		•	C		
		$v_1 = 30 - 10 \times 1.25$ or	M1		For using	g v = u - gt	(either	
		$v_2 = 10 - 10 \times 1.25$			case) or	e) or for calculating s1 and		
		or			substitut	ubstituting into		
		$v_1^2 = 30^2 - 2 \times 10(29.6875)$ or			$v_1^2 = 30^2 - 2 \times 10s_1 \text{ or}$			
		$v_2^- = 10^ 2 \times 10(4.6875)$			calculati into v_2^2 =	ng s ₂ and su = $10^2 - 2 \times 10^2$	bstituting)s ₂	
		Velocities 17.5ms ⁻ and – 2.5ms ⁻	A1	5				
	(11)		OR					
	(11)	$v_1 = 30 - 10t, v_2 = 10 - 10t$	M1			g v = u - gt for f	or P_1 and	
		$- v_1 - v_2 - 20$	M1		For using and P_2 and e	nd eliminating t using $v^2 = u^2 - 2gs$ for P_1 P_2 and then $s_1 = s_2 + 25$		
		$(30^2 - v_1^2) \div 20 =$ $(10^2 - v_2^2) \div 20 + 25$	A1				_	
		$v_1 - v_2 = 20, v_1^2 - v_2^2 = 300$	M1		For solvi equation	ing simultane is in v_1 and v_2	eous ′2	
		Velocities are 17.5 ms ⁻¹ and – 2.5 ms ⁻¹	A1	5				
	(iii)	$t_{\rm up} = 3$	B1					
		3 – 1.25	M1		For using	g $t_{\rm up\ and\ above}$ =	= $t_{\rm up} - t_{\rm equal}$	
		Time is 1.75 s or 1.25 < <i>t</i> < 3	A1	3				
-						-		
	(iii)	0 = 17.5 - 10t	M2		For using to the ar	g 0 = <i>u</i> – <i>gt</i> v iswer found	with <i>u</i> equal for v ₁ in (ii)	
		Time is 1.75 s or 1.25 < <i>t</i> < 3	A1				-	
					SR (max 0 = 17.5	<pre>1 out of 3 n + 10t</pre>	narks) B1 ft	