GCE A AND AS LEVEL

MARK SCHEME
MAXIMUM MARK: 50
SYLLABUS/COMPONENT: 9709/04
MATHEMATICS
Paper 4 (Mechanics 1)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2004	9709	4

$\left.\begin{array}{|l|l|l|l|l|}\hline \mathbf{1} & \text { (i) } & \begin{array}{l}F=13 \cos \alpha \\ \text { Frictional component is } 12 \mathrm{~N}\end{array} & \begin{array}{l}\mathrm{M} 1 \\ \mathrm{~A} 1\end{array} 2 & \text { For resolving forces horizontally } \\ \hline & \text { (ii) } & R=1.1 \times 10+13 \sin \alpha & \mathrm{M} 1 & \begin{array}{l}\text { For resolving forces vertically (3 } \\ \text { terms needed) }\end{array} \\ \hline & \text { (iii) } & \text { Cormal component is } 16 \mathrm{~N} & \mathrm{~A} 1 & 2\end{array}\right]$

2	$\begin{aligned} & X=100+250 \cos 70^{\circ} \\ & Y=300-250 \sin 70^{\circ} \\ & R^{2}=185.5^{2}+65.1^{2} \\ & R=197 \end{aligned}$ $\begin{aligned} & \tan \alpha=65.1 / 185.5 \\ & \alpha=19.3 \end{aligned}$	B1 B1 M1 A1 ft M1 A1 ft	6	For using $R^{2}=X^{2}+Y^{2}$ ft only if one B1 is scored or if the expressions for the candidate's X and Y are those of the equilibrant For using $\tan \alpha=Y / X$ ft only if one B1 is scored SR for $\sin / \cos \operatorname{mix}(\max 4 / 6)$ $X=100+250 \sin 70^{\circ}$ and $Y=300-250 \cos 70^{\circ}$ (334.9 and 214.5) Method marks as scheme M1 M1 $R=398 \mathrm{~N}$ and $\alpha=32.6 \quad \mathrm{~A} 1$
OR				
	316(.227766..) or 107(.4528..) or 299(.3343..) $71.565 \ldots^{\circ}$ or 37.2743 .. ${ }^{\circ}$ or -51.7039 .. $^{\circ}$ $\begin{aligned} & R^{2}=316.2^{2}+250^{2}- \\ & 2 \times 316.2 \times 250 \cos 38.4^{\circ} \\ & R^{2}=107.5^{2}+100^{2}- \\ & 2 \times 107.5 \times 100 \cos 142.7^{\circ} \\ & R^{2}=299.3^{2}+300^{2}- \\ & 2 \times 299.3 \times 300 \cos 38.3^{\circ} \\ & R=197 \\ & \sin (71.6-\alpha)=250 \sin 38.4 \div 197 \\ & \sin (37.3-\alpha)=100 \sin 142.7 \div 197 \\ & \sin (51.7+\alpha)=300 \sin 38.3 \div 197 \\ & \alpha=19.3^{\circ} \end{aligned}$	B1 B1 M1 A1 ft M1 A1 ft		Magnitude of the resultant of two of the forces Direction of the resultant of two of the forces For using the cosine rule to find R ft only if one B1 is scored For using the sine rule to find α ft only if one B 1 is scored

3	(i)	Distance $A C$ is 70 m $7 \times 10-4 \times 15$ Distance $A B$ is 10 m	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	For using $\|A B\|=\|A C\|-\|B C\|$
	(ii)		M1 A1 A1 ft	3	Graph consists of 3 connected straight line segments with, in order, positive, zero and negative slopes. $x(t)$ is single valued and the graph contains the origin $1^{\text {st }}$ line segment appears steeper than the $3^{\text {rd }}$ and the $3^{\text {rd }}$ line segment does not terminate on the t-axis Values of $t(10,15$ and 30$)$ and $x(70,70,10)$ shown, or can be read without ambiguity from the scales SR (max 1out of 3 marks) For first 2 segments correct B1

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2004	9709	4

4	(i)	$\mathrm{KE}=0.2 \mathrm{~g}(0.7)$ Kinetic energy is 1.4 J	$\begin{aligned} & \hline \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	2	For using KE = PE lost and PE lost $=m g h$
	(ii)	$\begin{aligned} & R=0.2 \times 10 \times \cos 16.3^{\circ} \\ & F=0.288 \mathrm{~N} \end{aligned}$ $\mathrm{WD}=0.72 \mathrm{~J}$ or $\mathrm{a}=1.36$ or resultant downward force $=0.272 \mathrm{~N}$ $\begin{aligned} & \mathrm{KE}=1.4-0.72 \quad \text { or } \\ & \mathrm{KE}=1 / 20.2(2 \times 1.36 \times 2.5) \\ & 0.272 \times 2.5 \end{aligned}$ Kinetic energy is 0.68 J		5	1.92 From $0.15 R$ (may be implied by subsequent exact value 0.72 , 1.36 or 0.68) From $2.5 F$ or from $0.2 a=0.2 \times 10 \times(7 / 25)-F$ (may be implied by subsequent exact value 0.68) For using KE = PE lost $-W D$ or $\mathrm{KE}=1 / 2 m v^{2}$ and $v^{2}=2$ as or $\mathrm{KE}=$ resultant downward force $\times 2.5$

5	(i)	$10 t^{2}-0.25 t^{4} \quad(+C)$ Expression is $10 t^{2}-0.25 t^{4}-36$	M1 DM1 A1	3	For integrating v For including constant of integration and attempting to evaluate it
	(ii)	Displacement is 60 m	A1 ft	1	Dependent on both M marks in (i); ft if there is not more than one error in $s(t)$
	(iii)	$\left(t^{2}-36\right)\left(1-0.25 t^{2}\right)=0$ Roots of quadratic are 4, 36 $t=2,6$	M1 A1 A1 ft	3	For attempting to solve $s=0$ (depends on both method marks in (i)) or $\int_{0}^{t} v d t=36$ (but not -36) for t^{2} by factors or formula method ft only from 3 term quadratic in t^{2}

6	(i)	$\begin{aligned} & D F-400=1200 \times 0.5 \\ & 20000=1000 \mathrm{v} \\ & \text { Speed is } 20 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	4	For using Newton's $2^{\text {nd }}$ law (3 terms needed) For using $P=F v$
	(ii)	$\begin{aligned} & 20000 / v-400=0 \\ & v_{\max }=50 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1	2	For using $P=F v$ and Newton's $2^{\text {nd }}$ law with $a=0$ and $F=400$ AG
	(iii)	```20000 = = 1500000 distance = 1500 000/400=3750 and time = 3750/50 Time taken is 75 s```	M1 A1	2	For using $P=\frac{\Delta W}{\Delta T}$ or for using 'distance = work done/400' and 'time = distance/50'

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - JUNE 2004	9709	4

\begin{tabular}{|c|c|c|c|c|c|}
\hline 7 \& (i) \& $$
\begin{aligned}
& 25=30 t-5 t^{2} \rightarrow t^{2}-6 t+5=0 \rightarrow \\
& (t-1)(t-5)=0 \\
& \text { or } \\
& v^{2}=30^{2}-500 ; t_{\text {up }}=(20-0) / 10 \\
& t=1,5 \text { or } t_{\mathrm{up}}=2 \\
& \text { Time }=5-1=4 \mathrm{~s} \text { or } \\
& \text { Time }=2 \times 2=4 \mathrm{~s} \text { or } 1<t<5
\end{aligned}
$$ \& M1

A1
A1 \& 3 \& For using $25=u t-1 / 2 g t^{2}$ and attempting to solve for t or for using $v^{2}=u^{2}-2 g(25)$ and $t_{\text {up }}=(v-0) / g$

\hline \& (ii) \& | $\begin{aligned} & s_{1}=30 t-5 t^{2} \text { and } s_{2}=10 t-5 t^{2} \\ & 30 t-10 t=25 \\ & t=1.25 \\ & v_{1}=30-10 \times 1.25 \text { or } \\ & v_{2}=10-10 \times 1.25 \\ & \text { or } \\ & \mathrm{v}_{1}{ }^{2}=30^{2}-2 \times 10(29.6875) \text { or } \\ & v_{2}^{2}=10^{2}-2 \times 10(4.6875) \end{aligned}$ |
| :--- |
| Velocities $17.5 \mathrm{~ms}^{-1}$ and $-2.5 \mathrm{~ms}^{-1}$ | \& | M1 |
| :--- |
| M1 |
| A1 |
| M1 |
| A1 | \& 5 \& | For using $s=u t-1 / 2 g t^{2}$ for P_{1} and P_{2} |
| :--- |
| For using $s_{1}=s_{2}+25$ and attempting to solve for t |
| For using $v=u-g t \quad$ (either case) or for calculating s_{1} and substituting into $\mathrm{v}_{1}^{2}=30^{2}-2 \times 10 \mathrm{~s}_{1}$ or calculating s_{2} and substituting into $\mathrm{v}_{2}{ }^{2}=10^{2}-2 \times 10 \mathrm{~s}_{2}$ |

\hline
\end{tabular}

(ii)	$\begin{aligned} & v_{1}=30-10 t, v_{2}=10-10 t \\ & \rightarrow v_{1}-v_{2}=20 \\ & \left(30^{2}-v_{1}^{2}\right) \div 20= \\ & \quad\left(10^{2}-v_{2}^{2}\right) \div 20+25 \\ & v_{1}-v_{2}=20, v_{1}^{2}-v_{2}^{2}=300 \end{aligned}$ Velocities are $17.5 \mathrm{~ms}^{-1}$ and $-2.5 \mathrm{~ms}^{-1}$	M1 M1 A1 M1 A1	5	For using $v=u-g t$ for P_{1} and P_{2} and eliminating t For using $v^{2}=u^{2}-2 g s$ for P_{1} and P_{2} and then $s_{1}=s_{2}+25$ For solving simultaneous equations in v_{1} and v_{2}
(iii)	$\begin{aligned} & \begin{array}{l} t_{\text {up }}=3 \\ 3-1.25 \\ \text { Time is } 1.75 \text { s or } 1.25<t<3 \end{array} \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	3	For using $t_{\text {up and above }}=t_{\text {up }}-t_{\text {equal }}$

| (iii) | $0=17.5-10 \mathrm{t}$
 Time is 1.75 s or $1.25<t<3$ | M2 | A1
 For using $0=u-g t$ with u equal
 to the answer found for v_{1} in (ii)
 SR (max 1 out of 3 marks $)$
 $0=17.5+10 t$ |
| :--- | :--- | :--- | :--- | :--- |
| | | | B1 ft |

